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Origami structures with a large number of excess folds are capable
of storing distinguishable geometric states that are energeti-
cally equivalent. As the number of excess folds is reduced, the
system has fewer equivalent states and can eventually become
rigid. We quantify this transition from a floppy to a rigid state
as a function of the presence of folding constraints in a classic
origami tessellation, Miura-ori. We show that in a fully triangu-
lated Miura-ori that is maximally floppy, adding constraints via
the elimination of diagonal folds in the quads decreases the num-
ber of degrees of freedom in the system, first linearly and then
nonlinearly. In the nonlinear regime, mechanical cooperativity
sets in via a redundancy in the assignment of constraints, and
the degrees of freedom depend on constraint density in a scale-
invariant manner. A percolation transition in the redundancy in
the constraints as a function of constraint density suggests how
excess folds in an origami structure can be used to store geometric
information in a scale-invariant way.
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Origami’s artistic origins harken back to the ancient art of
paper folding, but it is also found in many natural settings,

such as insect wings, leaves, vertebrate guts, flower petals, etc. (1–
3). The beauty and complexity of these origami folding patterns
arise from permutations and combinations of a few modules, of
which the simplest is a unit cell with four quads and four folds
intersecting at a vertex. The classic Miura-ori consists of periodic
repetition of this unit cell (Fig. 1A). It is highly symmetric and
has three important geometric properties (1). It is rigid foldable;
i.e., the folding process from a flat sheet is continuous without
bending any quads (2). It has only one degree of freedom (DoF)
(see SI Appendix, section 2 for details) (3). It is also flat foldable;
i.e., a flat sheet can be folded to a state where all of the planes
become coplanar. These geometric properties, together with the
fact that these patterns arise spontaneously from simple phys-
ical processes (2–4), have sparked much interest in the design
of origami-inspired objects such as satellite sails and self-folding
robots (5, 6), while also inspiring work on the mathematics
and mechanics of these objects (7–11). Simultaneously, from a
technological perspective, origami has become a paradigm for
programming geometry (12–15). Most studies focus on origami
with rigid quads (rigid-foldable origami) or elastic quads with an
associated bending energy, neither of which have more than a
few floppy (zero energy) degrees of freedom (16). The excep-
tions are the studies of configurations near the unfolded state
of triangulated origami (14, 15), but the general question of
the interplay between fold geometry, topology, and rigidity in
origami remains open. We address this question here by studying
how fold topology and geometry allow for the control of rigidity
in origami structures, with the potential for storage of geomet-
ric information or making reconfigurable structural materials for
use in nanotechnology, soft robotics, and architecture.

We start with a flat sheet of paper that is inextensible and
unshearable, made up of quadrilateral unit cells that can all fold
along their edges, and with a total of L⇥L quads (Fig. 1A)

(7, 8, 17) and 4-coordinated vertices. This is the classical
Miura-ori pattern that has a single zero-energy (floppy) global
DoF associated with an overall rigid folding motion (5). Topo-
logically, 4-coordinated vertices are generic in systems like crum-
pled paper and rigid origami (5- or higher-coordinated vertices
are degenerate and will spontaneously split into two or more
4-coordinated vertices, and 3-coordinated vertices are impos-
sible). However, generating nonperiodic folding patterns with
4-coordinated vertices is hard because of the presence of topo-
logical obstructions (13, 16). Therefore, we focus on the simple
periodic Miura-ori structure, but our results should generalize
to any 4-coordinated origami folded pattern which usually has a
very small number of internal degrees of freedom.

To make the folded structure floppy we introduce additional
folds in some of the quads by allowing them to also fold along
one of their two diagonals. If the additional fold is introduced
to every quad, the resulting sheet will have a large number
of zero-energy DoF. A number of natural questions then pose
themselves: How does the number of distinguishable geomet-
ric states in such an origami structure change as a function of
the number, location, and type of excess folds or constraints?
How redundant are these constraints? When and how does
geometric (mechanical) cooperativity arise in the system? And
how does rigidity arise in the system? Here we answer these
questions and show that there is a percolation transition that
heralds the onset of cooperativity in the system as a func-
tion of the density of constraints. Equivalently, we show that
the number of states increases exponentially as the density of
new folds increases past a critical threshold. Together these
results show how we might manipulate the information storage
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Fig. 1. Floppy origami. (A) Periodic Mirua-folded origami (Left). The unit
cell has four identical parallelograms. Blue quads are rigid, and gray quads
can fold about one diagonal. (B) If planarity constraints are enforced only
on the boundary quads, the origami has one additional DoF when L is
odd and no additional DoF when L is even, in addition to the global fold-
ing/expanding mode. (C) The line corresponds to the analytic estimate (main
text) for the maximum number of DoF mmax as a function of L; the points
correspond to results from an algebraic computation of rank of the rigidity
matrix (main text).

capacity of the system by exploiting the distance to the critical
threshold.

Mathematical Formulation
To calculate the (folding) degrees of freedom (m) of a sheet with
a prescribed number of floppy edges that allow for out-of-plane
bending, we replace the sheet by an equivalent network, where
the (L+1)2 vertices become nodes, the 2L(L+1) folds become
edges, and the quad faces are replaced by additional edges along
diagonal pairs of nodes. There are three types of constraints for
each quad in the resulting network: (i) E, the four peripheral
edges have constant length since the material is inextensible;
(ii) D, one of the diagonals has constant length (to prevent any
internal shear/rotation since the material is also unshearable);
and (iii) P (quad planarity), i.e., prevention of out-of-plane fold-
ing about this internal diagonal fold, this last constraint being
optional.

Constraint counting allows us to calculate the maximum DoF
of the structure (18), which occurs when all of the quads are
allowed to fold about the internal diagonal [we choose all of
the diagonal folds along the closest pair of diagonal vertices
of the quad, but the results are invariant to random choices
of the diagonals (SI Appendix, Fig. S1)]. For a sheet with L2

quads, there are (L+1)2 vertices. When all of the quads are
floppy (allowed to fold along one of the internal diagonals), there
are 2L(L+1) type E edge constraints and L2 type D diago-
nal constraints. Since each node has 3 DoF, there are at least
3(L+1)2 � (3L2 +2L)= 4L+3 degrees of freedom (m) for the
network, as we have not yet imposed the quad planarity con-
straint. Subtracting the 6 rigid-body DoF of the system there are
at least 4L� 3 degrees of freedom. We note that mmax ⇠L, sug-
gesting that when the number of constraints exceeds kL, where k
is a constant greater than 4, some of the constraints must become
redundant because of the geometric dependencies imposed by
piecewise isometric deformations of the sheet. As we will see
later, numerical simulations confirm that the type E and type
D constraints are independent and the maximum DoF (mmax)
is indeed 4L� 3 when none of the planarity constraints (type P)

are enforced. If we impose all of the L2 planarity constraints, the
structure has just a single internal DoF corresponding to the rigid
folding mode. What happens between these two limits?

To calculate the DoF of the system with a given number
of planarity constraints, we generalize the constraint-counting
argument to an infinitesimal consideration of how constraints
affect the rigidity of the network defined in terms of the coor-
dinates of all its nodes, g(~x1, ~x2, . . .)= 0. If the coordinates of
the four nodes in a quad are ~x1, ~x2, ~x3, ~x4 in counterclockwise
order, the quad edge-length (type E) and diagonal-length (type
D) constraints can be written as

g = |~xi � ~xj |2 � l2 =0 [1]

while the planarity constraint (type P) can be written as

g =(~x2 � ~x1)⇥ (~x4 � ~x1) · (~x3 � ~x1)= 0, [2]

which is equivalent to the vanishing of the volume of the tetra-
hedron formed by the nodes of the quad.

If each node suffers an infinitesimal displacement defined by a
vector ~dx , the condition for infinitesimal rigidity reads

A ~dx =0, [3]

where the rigidity matrix A has elements Aij = @gi/@xj , where
i 2 [1,N ], with N being the total number of constraints, and
j 2 [1, 3(L+1)2] (19, 20). Each row of the matrix represents one
constraint, and each column corresponds to one spatial coordi-
nate (x , y , or z ) of one of the (L+1)2 nodes. Thus, the DoF of
the origami system is the dimension of the null space of A. Equiv-
alently, we can calculate the rank of A, which is the number of
independent constraints, so that

DoF =3(L+1)2 � rank(A). [4]

Since we are interested in the internal floppy modes, we sub-
tract the six rigid translation and rotation modes of the whole
structure in reporting results of all of the following calculations.
As our rigidity matrix is potentially large, but sparse, we use
SuiteSparseQR for rank determination (21) (see SI Appendix,
section 3 for more details).

Analysis
For concreteness of our calculations, we start with a periodic par-
tially folded Miura-ori structure defined by a rhombus of side
a = b=2, internal angle �=⇡/4, and the dihedral angle ✓=
arccos(

p
2/3) [the choice of these parameters does not affect

the statistical results (SI Appendix, Fig. S2)]. Defining c as the
number of planar constraints in the floppy quads and ⇢= c/L2 as
the density of planar constraints (0 ⇢< 1), we randomly assign
⇢L2 quads to be rigid (blue quads in Fig. 1A), so that the remain-
ing (1� ⇢)L2 quads are floppy (gray quads in Fig. 1A). Eq. 4
shows that calculating rank(A) is tantamount to calculating the
DoF m . When ⇢=0, the rigidity matrix A consists of 2L(L+1)
type E constraints, L2 type D constraints, and 0 type P con-
straints, as described in Eqs. 1 and 2. Therefore, m reaches the
maximum m =mmax. Fig. 1C shows that mmax =4L� 3, verifying
that our simple counting argument is consistent with the results
of an algebraic computation.

Planarity Constraints on Boundary Quads Can Rigidify the Origami.
Since mmax =4L� 3 and mmin =1, we need at least mmax �
mmin =4L� 4 constraints to rigidify the system, where by rigid-
ity we mean that the origami structure has no extra modes
of motion besides the six rigid-body modes and the single
internal folding mode. Since the number of boundary quads
is exactly 4L� 4, we investigate the effect of constraints only
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on boundary quads. Interestingly, an origami structure with
planarity constraints (type P) on boundary quads is “almost”
rigidified: The resulting DoF depends on whether L is odd or
even (Fig. 1B). When L is odd, there are two DoF, i.e., one
additional DoF besides the planar expanding/folding mode (SI
Appendix, Fig. S3). When L is even, there is only one DoF corre-
sponding to the expanding–folding mode. The difference comes
from the structure of the center quads. When L is odd, there is
a single center quad. In the infinitesimal mode corresponding to
the extra DoF, as shown in SI Appendix, Fig. S3, one side of the
sheet folds while the other side expands. It involves the bending
of the single center quad. However, when L is even, there are
four center quads, and their infinitesimal bending will in general
not be mutually compatible. No matter whether L is odd or even,
placing constraints on the boundary is the most efficient way to
rigidify the system, since it requires only the minimum number
of planarity constraints.

There are likely two reasons for how rigidification arises from
planarity constraints on the boundary quads in origami. It is
known that in 2D square lattices (22), if the constraint pat-
tern satisfies the one-per-row and one-per-column condition, the
whole system becomes rigid. Constraining the boundary quads
in origami to be planar satisfies exactly the same condition and
might thus give an intuitive explanation for our observations
of how boundary-driven rigidification arises in floppy origami.

Additionally, as in purely 2D systems, floppy modes in origami
are more likely to involve boundary quads (22, 23); indeed, cor-
ner quads are an extreme example as they can bend without
involving any quads in the bulk. Therefore, rigidifying the bound-
aries first might be the most efficient way to rigidify the whole
system.

DoF Decreases First Linearly and Then Sublinearly As Constraint Den-
sity Increases. If we place the planarity constraints randomly on
any quad in the system, we expect a certain inefficiency in their
action—some will reduce the number of degrees of freedom,
while others will be redundant. To understand this, we note that
since there are L2 possible locations for these constraints, while
the minimal number of constraints to rigidify the origami is lin-
ear in L, generic placement of the constraints will likely lead
to constraint redundancy. To quantify this further, we use an
origami sheet with L=15 to study how the floppiness changes
with the constraint density and constraint pattern (each way of
spatially assigning ⇢L2 type P constraints among L2 quads is a
constraint pattern). For a given ⇢, we generate 200 random con-
straint patterns and calculate m and then sweep over ⇢2 [0, 1].
When ⇢⌧ 1, the sparseness of constraints implies that each con-
straint is independent and should reduce the DoF of the system
by one. At this stage, the DoF should remain independent of
the constraint pattern; in Fig. 2A, we see that the DoF indeed

A

D
E

B C

Fig. 2. DoF and geometric information in floppy origami. (A) DoF (m) decreases linearly first and then sublinearly as number of coplanar constraints c

increases. The solid circles represent the mean of the DoF among 200 repeats, the darker shaded region shows the SD of m, and the lighter shaded region
shows the range of m. (A, Inset) The variance in m starts to grow rapidly when the constraint density ⇢ reaches a critical value ⇢c, the onset of mechanical
cooperativity. (B) The distribution of DoF for 200 repeats when L = 15 for different constraint number c, in a range of different systems [indicated by blue
circles in (A)], is skewed in the beginning and the end of the sublinear region. (C) The onset of mechanical cooperativity associated with sublinear decrease
in m shifts leftward as system size L increases. (D) Simulations for different system sizes with L 2 [10, 1, 000] show that when ⇢& 10%, the DoF in the system
is essentially independent of L and decays exponentially. (D, Inset) For small ⇢, DoF m decreases first linearly and then sublinearly with c. (E) DoF m is a
function of both constraint number c and the constraint pattern; e.g., for L = 5 and ⇢= 12/25, different constraint patterns result in different DoF (m) from
5 to 7.
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decreases linearly when the constraint number density is small
and increasing.

However, when the density of constraints increases suffi-
ciently, some added constraints become redundant and thus do
not reduce m . If a constraint pattern includes more redundant
constraints, the corresponding DoF is larger, and vice versa. Dif-
ferent constraint patterns in this regime can thus lead to different
m . In the neighborhood of a critical constraint density (that is to
be determined), some patterns have redundant constraints while
most patterns do not; in the latter case the DoF m still follows
the simple rule m =4L� 3� c. Different constraint pattern real-
izations lead to variability in the observed number of degrees
of freedom, with a leftward skewness in this limit, as expected
(Fig. 2 B, i). As ⇢ further increases past a threshold, the mean
DoF decreases sublinearly with ⇢ as the constraints are more
likely to be redundant. Different constraint pattern realizations
in this regime lead to a distribution of m that is close to being
normal (Fig. 2 B, ii and iii). The SD (�m , shown in a darker shade
in Fig. 2A) and the interquartile range Q of the distribution of
m (SI Appendix, Fig. S4) are nonzero. We note that �m reaches
a peak right after the transition into the nonlinear regime, and
both m and �m decrease as ⇢ increases further. When ⇢⇠ 1, most
of the patterns have just a single degree of freedom with m =1,
and only a few patterns have additional DoF. The distribution of
m is skewed to the left again as expected (Fig. 2 B, iv). Finally,
when ⇢=1, �m =0 and m =1.

The transition from linear to sublinear behavior in the depen-
dence of the DoF as a function of the constraint density is
similar for all system sizes L. Indeed if we rescale the DoF by
its maximum (corresponding to no constraints), we see that the
transition from the linear to the sublinear regime shifts to smaller
⇢ when L increases (Fig. 2C). We use the interquantile range Q
of the distribution of m to define the critical transition density
⇢c corresponding to the smallest ⇢ when Q becomes larger than
zero (SI Appendix, Fig. S4), a definition that is more robust than
using the SD (�m) (see SI Appendix, section 5 for more informa-
tion), and find that the best fit to this dependence is ⇢c ⇠L�1 (SI
Appendix, Fig. S5). To understand this, we note that ⇢c = c⇤/L2,
where c⇤ is the number of constraints at the transition. Since the
redundancy must arise when c> 4L� 3, we expect that c⇤ ⇠L,
so ⇢c ⇠ 1/L. This scaling argument does not apply to systems that
are small, owing to finite size effects (SI Appendix, Fig. S5).

In the sublinear regime, we also note that the mean DoF
decreases exponentially with the density of constraints, indepen-
dent of L, with m ⇠ e�⇢ (=�2.96± 0.04 when ⇢2 [0.35�
0.80]), as shown in Fig. 2D, before eventually becoming asymp-
totic to unity corresponding to m =1. This observation suggests
an alternative view of the transition between the linear and
sublinear phases: If we start from the fully rigid state (⇢=1)
and remove the planarity constraints one at a time to make
the origami sheet floppy, we will see an exponential increase
in the DoF when the number of constraints is sufficiently large,
although the rate at which this happens is initially much slower
than the rate L2 in the linear regime (where m =mmax � c=
mmax �L2⇢). Eventually, when ⇢ ⇢c , there is no cooperativity
between the constraints anymore, and the exponential increase
in the DoF with decreasing ⇢ is replaced by the linear increase.
Together, these observations show that in the sublinear regime,
the DoF of the origami structure shows scale-free behavior and is
amenable to easy manipulation by varying the constraint density.

Additionally, we see that the range in the number of DoF
m , shown in a lighter shading in Fig. 2A, is much larger than
the variance in m(�m) (shown in darker shading), which means
that the different constraint patterns will lead to significantly dif-
ferent DoF—the extreme values of m(⇢) serve as bounds on
the maximum and minimum DoF possible. As a concrete exam-
ple, in Fig. 2E we show a system with L=5 and ⇢=12/25; i.e.,
12 quads are randomly selected to be rigid while the rest can

fold along their diagonals. The different constraint patterns have
m 2 [5� 7], depending on their geometric layout, showing how
constraint density ⇢ and constraint pattern together determine
the floppiness in the system, and thus serve as design parameters
for the ability to reconfigure floppy origami to create distinguish-
able geometric structures that have the same number (or density)
of constraints.

Information Storage in Origami. The results of the previous sec-
tion suggest mechanisms for maximizing geometric information
storage in origami structures as a function of the variability in
m(⇢). To quantify this, we first study how ⇢c and �m behave
as a function of system size L, and we sample L2 [10, 1, 000]
(L=10, 20, 30, . . . , 100, 200, 300, . . . , 1, 000). When ⇢ is smaller
than ⇢c , larger origami structures have more DoF since mmax =
4L� 3, and the DoF decreases linearly with an increase in ⇢c
(Fig. 2D, Inset). Once ⇢> ⇢c , different patterns can result in dif-
ferent m owing to redundancy/cooperativity, and �m significantly
increases. [Note that the peak ⇢ for �m is slightly larger than
⇢c , but the difference is negligible for large L (SI Appendix, sec-
tion 5).] For larger origami, the peak of �m occurs at smaller
⇢ (Fig. 3A), which is similar to the shift of ⇢c in Fig. 2C. The
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Fig. 3. Geometric information and rigidity in floppy origami. (A) The vari-
ance in DoF (�m) for L from 100 to 1,000. For larger L, the peak of �m occurs
at smaller ⇢ for larger L, and max(�m) increases linearly with L (Inset). (B)
The Shannon entropy I is maximum at ⇢c, decreases when ⇢> ⇢c indepen-
dent of system size L, and characterizes the capacity for information storage
in floppy origami. (C) The probability of being rigid (having only the sin-
gle rigid-folding DoF) is completely determined by ⇢, and when ⇢� 0.5, this
probability starts to increase and eventually saturates to unity.
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peak �m increases almost linearly as L increases (Fig. 3A, Inset),
suggesting that there is an increasing range of m associated
with different constraint patterns, which results from the increas-
ing number of constraint patterns around ⇢c [there are

�
L2

c⇤
�

patterns around ⇢c and this number of combinations increases
significantly with L].

In this regime, the number of floppy configurations is large,
so that origami can be used to store information geometrically.
Assume there are ⇢cL

2 rigid quads and (1� ⇢c)L
2 floppy quads.

One can store the DoF information with the same material sim-
ply by rearranging and combining these quads to a Miura-ori
structure (constructing different constraint patterns). To quan-
tify this information capacity, we calculate the Shannon entropy
of the distribution of DoF I (⇢)=�

P
m p(m, ⇢) log(p(m, ⇢)),

where the p(m, ⇢) is the probability of the DoF being m among
the 200 repeats for a given constraint density ⇢. In Fig. 3B, we
see that for origami with large L, the Shannon information peaks
for ⇢ 0.05 and decreases as ⇢ becomes larger. [This peak den-
sity is also slightly larger than the ⇢c we define (SI Appendix,
section 5).] Due to the sampling limit (200 patterns per ⇢),
there is an upper limit in the information capacity in the system:
I = log2(200)= 7.64 when there are 200 distinct DoF. We see
that for large L, the maximum information capacity approaches
this limit around ⇢c . When ⇢ is large, the information capac-
ity is independent of L and decreases as the variance of DoF
decreases.

Scale-Free Control of DoF in Origami. Strikingly, once ⇢> ⇢c and
reaches a threshold (around 10%), the curves for different L
collapse onto a single curve. Then both the DoF (Fig. 2D) and
information capacity (Fig. 3B) are completely determined by the
density of coplanar constraints regardless of how big the origami
structure is (Fig. 2D), i.e., in a scale-invariant form. Further-
more, when ⇢ becomes sufficiently large (⇢> 0.5), the constraints
lead to a high probability of the system being rigid (having
just the rigid-folding DoF that is always present in Miura-ori),
since the number of constraints required to rigidify the system
c⇡ 4L� 4⌧L2. Defining the probability of being rigid for a
given ⇢ as the number of constraint patterns that leads to rigid
origami divided by the number of constraint patterns possible
(which we fix to be 200—the results are independent of this
choice), in Fig. 3C, we show that this probability is a function of
⇢ alone. All of the results above suggest that when ⇢& 0.1> ⇢c ,
m =m(⇢) is independent of L and that the floppiness of origami
is scale-free in this regime.

Percolation Behavior of Redundancy Near ⇢c . To understand the
nature of the transition from the linear to sublinear decrease in
DoF in the neighborhood of ⇢c , we note that the cooperativity
of the constraints arises from the geometry of the folds coming
together at the vertices. To quantify this, we choose a specific
system of size L=30, starting from a fully floppy state (⇢=0),
and add constraints one by one randomly. At each step, we find
all of the redundant (light blue) and nonredundant (white) con-
straints (Fig. 4A), by comparing the current DoF and the DoF for
a pattern with an additional planarity constraint on one of the
free quads (not dark blue, which are already constrained). We
iterate this process until all of the quads are constrained (⇢=1)
and repeat the entire process 100 times. Denoting the number of
redundant and nonredundant quads as qr and qn , respectively,
we define the “redundancy” as r = qr/(qr + qn)2 [0, 1].

When ⇢=0, there are no redundant quads, i.e., r =0, and
each constraint reduces the DoF by one, as shown in Fig. 4A.
When ⇢⇠ ⇢c , we see a burst of redundancy, with more redun-
dant quads in the center than in the corners. For ⇢> ⇢c , the
number of redundant quads starts to decrease almost linearly as
the number of free quads decreases (SI Appendix, Fig. S6), but
the mean redundancy [the blue curve in Fig. 4A, averaged

A
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Fig. 4. Redundancy of constraints shows percolation behavior at critical
density ⇢c. (A) Redundancy qr/(qr + qn) has a sharp jump around ⇢= ⇢c and
approaches unity as ⇢ increases for origami with L = 30. The 100 gray lines
show the change of qr/(qr + qn) in 100 runs, and the blue line shows the
mean. Three redundancy patterns at different stages are shown (see Movie
S1 for details). (B) The redundancy curve for different L from 40 to 80. (C)
Redundancy percolation curves collapse after ⇢! (⇢� ⇢c) (main text).

from the 100 simulations (gray lines)] keeps increasing and
approaches 1. (In Movie S1, we show the process of adding con-
straints sequentially and the resultant change in redundancy.) To
quantify the potential percolation transition in the redundancy r
as a function of constraint density ⇢, we explore system sizes in
the range L2 [40, 80], in the scale-free regime. Instead of adding
constraints singly, we generate 100 random constraint patterns
at a given ⇢ and calculate the average redundancy. In Fig. 4B, we
see a signature of percolation at different constraint density as a
function of L, with r ! 1 when ⇢> ⇢c . Using finite size scaling
analysis to study the percolation transition, we adopt the ansatz
r =L�⌫ f ((⇢� ⇢c(L))L

⇠) to examine the transition. We find that
the redundancy curves collapse by shifting the density by ⇢c(L)
with (⌫=0, ⇠=0) (Fig. 4C) (see SI Appendix, Figs. S7 and S8 for
more details); indeed, redundancy percolation happens at exactly
the same time as Q deviates from zero. Redundancy not only
increases sharply near ⇢c , but also has high variance at a given ⇢
around ⇢c (gray lines do not overlap in the nonlinear region in
Fig. 4A), which means that randomly generated constraint pat-
terns may contain a significantly different number of redundant
quads. The difference in the number of redundant quads leads
to different DoF and thus nonzero Q . All of the quantities m ,
Q , and I (m, ⇢) have a critical transition at ⇢= ⇢c . We may note
that this percolation transition in DoF with respect to constraint
density has some similarities to rigidity percolation in 2D and 3D
random networks (24, 25), but note that our problem is rather
different due to the nature of the geometric embedding problem
associated with having a 2D sheet bent into the third dimen-
sion. As discussed in Mathematical Formulation, the planarity
constraint (type P) in the flat quads of Miura-ori is fundamen-
tally different from the diagonal edge-length constraint (type D).
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The former prevents volume change while the latter prevents
length/area change. If we generalize our geometry of Miura-ori
to more general folding patterns, with some quads bent along the
diagonal, these two types of constraints will be equivalent, and
we might recover the results of rigidity percolation in 3D ran-
dom networks as discussed in ref. 25. See SI Appendix, section 2
for more details.

Discussion
The geometric complexity associated with origami has long been
an artist’s playground. But this ancient art form is in equal
measure a rich source of mathematics and an inspiration for
technology. Here, we have focused on the role of excess folds,
or complexity (Latin cognate: com + plicare = fold together),
in determining how excess folds can influence the rigidity of
these structures. Beginning with a minimally complex geometric
origami pattern associated with Miura-ori that has just a sin-
gle folding degree of freedom, we have investigated how adding
extra diagonal folds allows us to ask and answer questions about
its potential for reconfigurability and ability to store geometric
information.

When we start with a maximally floppy Miura-ori struc-
ture that is fully triangulated and introduce coplanarity con-
straints, the mean DoF initially decreases linearly until the
constraint density ⇢= ⇢c , beyond which the DoF starts to
decrease sublinearly as geometric cooperativity sets in the

sheet. This is coincident with a percolation transition in the
redundancy/cooperativity in the origami structure, reminiscent
of similar transitions in simple planar or 3D systems (24,
25). Simultaneously, the redundancy of coplanar constraints
increases abruptly, leading to a maximum in the Shannon
entropy and a maximum in the information storage capacity.
This transition bears qualitative similarities to the phase transi-
tion seen in Hopfield networks that have an exponential increase
in the number of memories as the connectivity crosses a critical
threshold (26) and to a recent reprisal of this idea in a material
model of self-assembly (27).

The presence of a percolation transition points toward some
intriguing applications that include (i) a framework for multi-
bit mechanical information storage, going beyond a recent 1-bit
origami-based storage device (28); (ii) strategies for the opti-
mal control of the number of DoF in a floppy origami structure
in the neighborhood of the transition as well as deep in the
scale-free regime; and (iii) an exploration of mechanical coop-
erativity in origami, similar to that in 2D networks (29, 30).
Given that these chimeric denizens can move between two and
three dimensions, there is clearly a lot that still remains to be
explored.
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